Non-connective K-theory of exact categories with weak equivalences

نویسنده

  • Satoshi Mochizuki
چکیده

The main objective of this paper is to extend a domain variables of non-connective Ktheory to a wide class of exact categories with weak equivalences which do not satisfy the factorization axiom in general and develop fundamental properties of non-connective Ktheory. The main application is to study the topological filtrations of non-connective K-theory of a noetherian commutative ring with unit in terms of Koszul cubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maltsiniotis’s First Conjecture for K1

We show that K1(E) of an exact category E agrees with K1(DE) of the associated triangulated derivator DE. More generally we show that K1(W) of a Waldhausen category W with cylinders and a saturated class of weak equivalences agrees with K1(DW) of the associated right pointed derivator DW. Introduction For a long time there was an interest in defining a nice K-theory for triangulated categories ...

متن کامل

Maltsiniotis ’ S First Conjecture For

We show that K1(E) of an exact category E agrees with K1(DE) of the associated triangulated derivator DE. More generally we show that K1(W) of a Waldhausen category W with cylinders and a saturated class of weak equivalences agrees with K1(DW) of the associated right pointed derivator DW. Introduction For a long time there was an interest in defining a nice K-theory for triangulated categories ...

متن کامل

Duality in Waldhausen Categories

We develop a theory of Spanier–Whitehead duality in categories with cofibrations and weak equivalences (Waldhausen categories, for short). This includes L–theory, the involution on K–theory introduced by [Vo] in a special case, and a map Ξ relating L–theory to the Tate spectrum of Z/2 acting on K–theory. The map Ξ is a distillation of the long exact Rothenberg sequences [Sha], [Ra1], [Ra2], inc...

متن کامل

A dévissage theorem for modular exact categories with weak equivalences

In this note, we will introduce a notion of modularity of exact categories due to Masana Harada [Har05]. The naming is coming from the classical modular lattices theory [Bir48]. We will also state and prove so-called “homotopy Grayson-Staffeldt-Jordan-Hölder theorem” which is implicitly appeared in [Gra87] and [Sta89]. The theorem says contractibility of a simplicial set associated to a certain...

متن کامل

Symmetric Monoidal Categories Model All Connective Spectra

The classical infinite loopspace machines in fact induce an equivalence of categories between a localization of the category of symmetric monoidal categories and the stable homotopy category of -1-connective spectra. Introduction Since the early seventies it has been known that the classifying spaces of small symmetric monoidal categories are infinite loop spaces, the zeroth space in a spectrum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011